SeckillThinking

秒杀系统设计及问题解决

项目地址:https://github.com/JiayiY/SeckillSystem

流程图

秒杀流程图

链接暴露

解决方案:URL动态化,MD5加密 + 盐值

前端先请求path接口,拿到动态生成加密后的秒杀接口,再请求接口{path}/do_miaosha

@RequestMapping(value = "{path}/do_miaosha")
@ResponseBody
public ResultSk<Integer> miaosha(Model model, SkUser skUser, @RequestParam("goodsId") long goodsId, @PathVariable("path") String path) {
...
//验证path
boolean check = skService.checkPath(skUser, goodsId, path);
if (!check) {
result.withError(REQUEST_ILLEGAL.getCode(), REQUEST_ILLEGAL.getMessage());
return result;
}
...
}


@AccessLimit(seconds = 5, maxCount = 5, needLogin = true)
@RequestMapping(value = "path")
@ResponseBody
public ResultSk<String> skPath(Model model, SkUser skUser, @RequestParam("goodsId") long goodsId, @RequestParam(value = "verifyCode", defaultValue = "0") int verifyCode) {
ResultSk<String> result = ResultSk.build();
model.addAttribute("user", skUser);
if (skUser == null) {
result.withError(ResultStatus.SESSION_ERROR.getCode(), ResultStatus.SESSION_ERROR.getMessage());
return result;
}
boolean check = skService.checkVerifyCode(skUser, goodsId, verifyCode);
if (!check) {
result.withError(REQUEST_ILLEGAL.getCode(), REQUEST_ILLEGAL.getMessage());
return result;
}
String path = skService.createSkPath(skUser, goodsId);
result.setData(path);
return result;
}

@Override
public String createSkPath(SkUser skUser, long goodsId) {
// 生成url
String str = MD5Util.md5(UUIDUtil.generateUuid() + "123456");
// 放入缓存
redisService.set(SkKey.getSkPath, "" + skUser.getId() + "_" + goodsId, str);
return str;
}

资源静态化

在前后端分离的项目中,页面一般都是不会经过后端的,前端也有自己的服务器,所以提前把能放入CDN服务器的东西都放进去,减少真正秒杀时候服务器的压力。

验证码

加入验证码或者滑块,防止秒杀的时候请求一起打过来。

库存预热

开始秒杀前通过定时任务提前把商品的库存加载到Redis中,让整个流程都在Redis里面去做。

超卖

原因:将商品的库存加载到Redis中,如果秒杀成功,再异步的修改库存。假如此时库存仅剩一个,四台服务器一起查询都发现还有一个,都去扣库存,此时库存变为-3,造成超卖。

解决方案:MySQL使用版本(CAS原理)

select version from goods WHERE id= 1001
update goods set num = num - 1, version = version + 1 WHERE id = 1001 AND num > 0 AND version = @version(上面查到的version)

优化:使用Lua脚本,将判断库存和扣减库存都写在一个脚本中由Redis执行,如果return false则证明库存已减为0。

限流

漏桶算法

水(请求)先进入到漏桶里,漏桶以一定的速度出水,当水流入速度过大会直接溢出,可以看出漏桶算法能强行限制数据的传输速率。

令牌桶算法

能够限制数据的平均传输速率,还允许某种程度的突发传输。

在令牌桶算法中,只要令牌桶中存在令牌,那么就允许突发地传输数据直到达到用户配置的门限,因此它适合于具有突发特性的流量。

分布式限流

解决方案:Redis + Lua

public static boolean acquire() throws IOException, URISyntaxException{
Jedis jedis = new Jedis("127.0.0.1");
String lua =
"local key = KEYS[1] " +
" local limit = tonumber(ARGV[1]) " +
" local current = tonumber(redis.call('get', key) or '0')" +
" if current + 1 > limit " +
" then return 0 " +
" else " +
" redis.call('INCRBY', key,'1')" +
" redis.call('expire', key,'10') " +
" end return 1 ";
// 当前秒
String key = "ip:" + System.currentTimeMillis() / 1000;
// 最大限制
String limit = "5";
List<String> keys = new ArrayList<>();
keys.add(key);
List<String> args = new ArrayList<>();
args.add(limit);
jedis.auth("1234");
String luaScript = jedis.scriptLoad(lua);
Long result = (Long) jedis.evalsha(luaScript, keys, args);
return result == 1;
}

分布式限流的关键是将限流做成具有原子性的功能,使用Redis+lua实现时间窗口内的流量控制。因为操作在lua脚本中并且redis是单线程的,所以线程安全。

单用户限制接口请求频率

采用拦截器实现

缓存与数据库的双写一致性

  • 读的时候,先读缓存,缓存没有的话,就读数据库,然后取出数据后放入缓存,同时返回响应。
  • 更新的时候,先更新数据库,然后再删除缓存

为什么不是更新缓存

如果是写多读少的场景,频繁更新缓存浪费性能,有很多冷数据;

可能会存在脏数据(线程A更新了数据库;线程B更新了数据库;线程B更新了缓存;线程A更新了缓存);

为什么不是先删缓存再更新数据库

(1)请求A进行写操作,删除缓存;

(2)请求B查询发现缓存不存在;

(3)请求B去数据库查询得到旧值;

(4)请求B将旧值写入缓存;

(5)请求A将新值写入数据库;

会导致数据不一致的情形出现。而且,如果不采用给缓存设置过期时间策略,该数据永远都是脏数据。

先更新数据库,再删除缓存可能存在的问题

假设有两个请求,请求A做查询操作,请求B做更新操作,可能发生:

(1)缓存刚好失效;

(2)请求A查询数据库,得一个旧值;

(3)请求B将新值写入数据库;

(4)请求B删除缓存;

(5)请求A将查到的旧值写入缓存;

发生这种情况的概率又有多少呢?

发生上述情况的前提:步骤(3)的写数据库操作比步骤(2)的读数据库操作耗时更短,才有可能使得步骤(4)先于步骤(5)。

但是,数据库的读操作的速度远快于写操作的,因此步骤(3)耗时比步骤(2)更短,这一情形很难出现。

数据库和缓存一致性

延时双删

(1)先淘汰缓存;

(2)再写数据库(这两步和原来一样);

(3)休眠1秒,再次淘汰缓存(休眠时间根据项目自定义);

写数据的休眠时间则在读数据业务逻辑的耗时基础上,加几百ms即可。确保读请求结束,写请求可以删除读请求造成的缓存脏数据。

缓存key的封装采用什么设计模式

模板模式

  • 优点

    具体细节步骤实现定义在子类中,子类定义详细处理算法是不会改变算法整体结构;

    代码复用的基本技术,在数据库设计中尤为重要;

    存在一种反向的控制结构,通过一个父类调用其子类的操作,通过子类对父类进行扩展增加新的行为,符合“开闭原则”;

  • 缺点

    每个不同的实现都需要定义一个子类,会导致类的个数增加,系统更加庞大;

Author: Jiayi Yang
Link: https://jiayiy.github.io/2020/08/09/SeckillThinking/
Copyright Notice: All articles in this blog are licensed under CC BY-NC-SA 4.0 unless stating additionally.